The effects of insulin-like growth factor I (IGF-I) complex from seminal plasma on capacitation, membrane integrity and DNA fragmentation in goat spermatozoa

by Abdul Malik

**Submission date:** 28-Mar-2019 10:55AM (UTC+0700)

**Submission ID:** 1101193440

File name: 4. APJR 2015 3.pdf (355.71K)

Word count: 3687

Character count: 20104



Contents lists available at ScienceDirect

### Asian Pacific Journal of Reproduction

journal homepage: www.apjr.net



Original research

http://dx.doi.org/10.1016/j.apjr.2015.06.003

The effects of insulin-like growth factor I (IGF-I) complex from seminal plasma on capacitation. membrane integrity and DNA fragmentation in goat spermatozoa

Suhemi Susilowati<sup>1</sup>, Indah Norma Triana<sup>1</sup>, Abdul Malik<sup>2</sup>°

Department of Veterinary Reproduction, Faculty of Veterinary Medicine, Airlangga University, Surabaya, Indonesia

<sup>2</sup>Department of Animal Science, Islamic University of Kalimantan, Banjarmasin, Indonesia

## ARTICLE INFO

Article history: Received 2 Mar 2015 Received in revised form 21 May 2015

Accepted 26 May 2015 Available online 24 July 2015

#### Keywords:

permatozoa IGF-I complex Seminal plasma Membrane integrity DNA fragmentation

#### ABSTRACT

To evaluate the effects of the insulin-like growth factor I (IGF-I) complex from seminal plasma on capacitatio 13 nembrane integrity and DNA fragmentation.

Methods: A total of 0.5 mL of fresh semen was added to 1 mL of Bracket-Oliphant

(BO) medium, and the sample was then centrifuged at a speed of 1800 rpm for 10 min. The samples were analyzed before and after centrifugation for sperm viability, motility, membrane integrity and capacitation. The centrifuged samples were divided into three groups, each consisting of  $3 \times 10^6$  spermatozoa. BO medium was added to group 1, BO + 12 ng IGF-I complex medium was added to group 2, and 12 ng IGF-I complex was added to group 3. Then, the samples were incubated for 15 min.

Results: The result showed that sperm motility, viability and membrane integrity were significantly higher (P < 0.05) after centrifugation. Furthermore, the sperm capacitation was significantly lower (P < 0.05) after centrifugation. The percentages of sperm capacitation, membrane integrity and DNA fragmentation were significantly different (P < 0.05) in all media, including BO, BO + IGF-I complex and the IGF-I complex alone. Conclusions: Sperm quality include motility, viability and membrane integrity were lower after centrifugation. Whereas DNA fragmentation after incubation in the IGF-I complex medium also was lower compared to that of specimens in the BO and BO + IGF-I complex media.

#### 1. Introduction

Sperm manipulation for improving fertilization is undertaken not only in vivo but also in vitro and underlies the manipulation of spermatozoa for clinical in vitro fertilization (IVF). One method for sperm manipulation is the centrifugation of spermatozoa. The process of capacitation of spermatozoa involving biochemical and physiological processes involves complex reactions. During capacitation, modification and characterization of the membrane occur, in addition to enzyme activation and spermatozoa motility [1]. One negative result of centrifugation of semen is the increased formation of reactive oxygen species (ROS) by the spermatozoa. The increase in ROS production after separation by centrifugation is thought to be a complex process and can be derived from chemical processes in organelles inside the cell or even from processes outside the

cell [2]. Reactive oxygen species are an important mediator of the function of spermatozoa and are involved in hyperactivity induction, capacitation and acrosome reaction, in addition to spermatozoa and oocyte fusion [3]. However, when excessive ROS are produced, they cannot be neutralized by the antioxidant defense systems of spermatozoa or seminal plasma. This excess will lead to fatty acid damage, especially among polyunsaturated fatty acids, which are essential components of the sperm membrane phospholipid layer, the inactivation of glycolytic enzymes, DNA chain termination, and 10 decrease in sperm motility and sperm death.

Semen consists of spermatozoa suspended in a fluid medium called seminal plasma. Seminal plasma is a complex fluid that mediates the chemical function of the ejaculate. One component of seminal plasma is insulin-like growth factor (IGF-I). This growth factor has been suggested to have a direct or indirect role in spermatog resis/steroidogenesis in the testes, and its derangement may be involved in male infertility [4.5]. The protein contained in seminal plasma includes the insulin-like growth factor I (IGF-I) complex.

Peer review under responsibility of Hainan Medical College.

<sup>\*</sup>Corresponding author: Abdul Malik, Department of Animal Science, Islamic University of Kalimanta 5 Banjarmasin, Indonesia E-mail: sidol\_99@yahoo.com

Insulin-like growth 7 ctor-I forms a complex that binds with another molecule that has a molecular weight of 150 kDa and consists of three protein molecules, in 7 ling one molecule of insulin-like growth factor-I (sub unit  $\alpha$ ) with a molecular weight of 7.6 kDa, one mo 7 ule of insulin-like growth factor binding protein (sub unit  $\beta$ ) with a molecular veight of 53 kDa and one molecule of an acid-labile subunit with a molecular weight of 85 kDa (sub unit  $\beta$ ) [6]. The acid-labile subunit that binds with IGF-I increases the molecular weight by adding a complex function to the bond between IGF and IGF-3. In seminal plasma, IGF-I has been ident 3 d in the testes and is secreted by Leydig and Sertoli cells [7]. IGF-I has been reported to be a significant factor for germ cell development, maturation and the motility of spermatozoa [8,9].

Selvaraju et al. [10] reported that variations in IGF-I levels in seminal plasma can influence germ cell stimuli, including the development, maturation and motility of the spermatozoa. Hence, this study was conducted to determine the possibilities of improving sperm quality with the insulin-like growth factor I (IGF-I) complex after neubation. The objective of the present study was to evaluate the effects of the insulin-like growth factor I (IGF-I) complex from seminal plasma on capacitation, membrane integrity and DNA fragmentation in goat spermatozoa.

#### 2. Materials and methods

#### 2.1. Experimental animals

A total of three male goats were used for semen collection in this study. The average body weight was 45 kg, and the average age was 3-4 years. Semen was collected from the goats two weeks after start of adaptation to the location with the aid of an artificial vagina. Immediately, after collection, the semen was kept in a water bath (37 °C), and semen parameters were assessed, including volume, pH, cellistency, color and concentration of the semen. A total of 0.5 mL of fresh semen was added to 1 mL of Bracket-Oliphant (BO) medium, and the sample was then centrifuged at a speed of 1800 rpm for 10 min. The samples were analyzed before and after centrifugation for sperm viability, motility, membrane integrity and capacitation. The centrifuged samples were divided into the three groups, each consisting of  $3 \times 10^6$  spermatozoa. BO medium was added to group 1, BO + 12 ng IGF-I complex medium was added to pup 2, and 12 ng IGF-I complex was added to group 3. Then, the samples were incubated for 15 min. The samples were then analyzed for sperm viability, motility, membrane integrity, capacitation and DNA fragmentation. For identification, constituents from goat seminal plasma proteins were assessed via native polyacrylamide gel electrophoresis (Native-PAGE) with a concentration of 12% using an electrophoresis mini protein gel (Bio-Rad), and the IGF-I complex protein was isolated from seminal plasma by electro-elution.

#### 2.2. Sperm viability

Eosin-nigrosin staining was used to evaluate sperm viability as descepted by Malik *et al.* [11]. After thawing, one drop of semen was placed on a tempered glass slide, and this sample was mixed with one drop of eosin-nigrosin solution (0.2 g of eosin and 2 g of nigr 16 were dissolved in a buffered saline solution, mixed for 2 h at room temperature and filtered to obtain

the staining media). The mixture was smeared on the glass slide and allowed to air dry. One hundred spermatoz 11 vere evaluated in at least five different fields in each smear under a light microscope. Eosin penetrates non-viable cells, which appear red, and nigrosin offers a dark background for facilitating the detection of viable, non-stained cells.

#### 2.3. Assessment of motility

The motility of the spermatozoa was analyzed by mixing the semen gently and placing a 10  $\mu$ L drop of diluted semen on a warm slide covered with a glass cover slip (18  $\times$  18 mm) from five selected representative fields. Samples were selected randomly from 10 fields, for a total of 200 cells. Individual sperm were recorded as being viable or dead.

#### 2.4. Assessment of sperm membrane integrity

Membrane integrity was determined using the hypo-osmotic swelling test (HOST) described by Malik et al. [12]. A total of 100 μL of semen was mixed with 1 mL of hypotonic solution (osmotic pressure 100 mOsm/kg) containing 13.51 g of fructose and 7.35 g of sodium citrate in 1000 mL of distilled water. The mixture was incubated at 37 °C for 60 min. Following incubation, 15 µL of the sample was placed on a slide, covered with a cover slip and observed under a differential interference microscope (Olympus CK2, ULWCD 0.30) at a magnification of 400x. The spermatozoa were categorized according to the presence or absence of a swollen tail. At least 200 spermatozoa were observed, and the results were recorded as percentages. The membrane integrity after HOST was classified into two groups: normal spermatozoa that displayed coiled tails and abnormal spermatozoa without coiled tails.

#### 2.5. Assessment of sperm capacitation

Sperm capacitation was assessed using chlortetracycline (CTC). Coloration with CTC showed that when the spermatozoa underwent visible capacitation, 2/3 of the equator appear to be yellow sperm heads that are lighter due to the increased distribution of Ca<sup>+</sup>, the spermatozoa that underwent acrosome reactions were colorless and had only the yellow tape on the equator of the spermatozoa head. Observations of the capacitation and acrosome reaction of the spermatozoa were performed using a fluorescence microscope at a magnification of 400×.

#### 2.6. Assessment of sperm DNA fragmentation

DNA fragmentation was assessed by a terminal deoxynucleotide transferase-mediated dUTP nick end labeling (TUNEL) assay adopted by Natalia-Rougier *et al.* [13]. Briefly, all elements were fixed in 2% formaldehyde in 1× PBS solution (pH 7.4; Gibco) for at least one hour. Each sample was placed into one well of a multiwell plate (4-mm diameter). After 2–3 h, each well was washed with 1× PBS (three times, 5 min each), and the cells were permeabilized with cold methanol. Before incubation with the TUNEL solution, each well was washed again with 1× PBS. For each sample, one extra well was incubated with DNA (1 U/mL; Sigma) for 30 min at 37 °C as a positive control, and in another well, the TUNEL

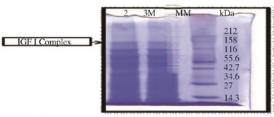



Figure 1. Get analysis with Native-PAGE by concentration 12% on seminal plasma of goat (M = marker, 2.3 = samples of seminal plasma).

Table 1
Percentages of the sperm motility, viability, membrane integrity and capacitation before and after centrifugation with 1800 rpm for 10 min.

| Parameters             | Before centrifugation     | After centrifugation |
|------------------------|---------------------------|----------------------|
| Sperm motility (%)     | 91.25 ± 5.25 <sup>a</sup> | $75.60 \pm 4.35^{b}$ |
| Sperm viability (%)    | $93.40 \pm 2.25^{a}$      | $84.50 \pm 2.25^{b}$ |
| Membrane integrity (%) | $90.50 \pm 5.50^{a}$      | $74.85 \pm 6.75^{b}$ |
| Capacitation (%)       | $10.45 \pm 5.80^{a}$      | $21.10 \pm 4.50^{b}$ |

 $^{a, b}$ Values in the same row with different superscripts indicate significant difference at P < 0.05 (n = 12).

"enzyme" solution was omitted as a negative control. The total sample was incubated in TUNEL solution for one hour at 37 °C. All samples were finally washed with 1× PBS (three times, 5 min each), and mounted in Vectashield H-1000 medium (Vector Laboratories). A total of 400 spermatozoa were counted by fluorescence microscopy for each fraction.

#### 2.7. Statistical analysis

All data were expressed as the mean values ± S.E.M. The statistical significances of the effects of membrane integrity and DNA fragmentation after centrifugation were determined by ANOVA (S-PLUS Statistical Program, Insightful Corporation Seattle, WA, USA). *P*-values <0.05 were considered to be significantly different.

#### 3. Results

Based on the evaluation of fresh ejaculation, the mean semen volume was  $(1.10 \pm 1.26)$  mL, and the sample was cloudy to creamy white in color, had a pH of  $(7.00 \pm 0.07)$ , and was of thin to thick consistency. The mean mass activity was  $2.28 \pm 0.41$  with a percentage of motile and viable sperm of  $(90.00 \pm 8.40)\%$ . The percent of sperm capacitated was  $(10.85 \pm 87.00)\%$ , and the sperm concentration was  $397 \times 10^6$  spermatozoa. The results of analysis using a native polyacrylamide gel electrophoresis with a concentration of 12%

indicated the presence of a protein and IGF-I complex of 150 (kDa) molecular weight (mw) (Figure 1).

The percentages of spermatozoa motility, viability, membrane integrity and capacitation of the semen before and after centrifugation were shown in Table 1. Sperm motility, viability and membrane integrity were significantly higher (P < 0.05) after centrifugation. Furthermore, the sperm capacitation was significantly lower (P < 0.05) after centrifugation. The percentages of sperm capacitation, membrate integrity and DNA fragmentation after centrifugation were shown in Table 2. The percentages of sperm capacitation, membrane integrity and DNA fragmentation were significantly different (P < 0.05) in all media, including BO, BO + IGF-I complex and the IGF-I complex alone.

#### 4. Discussion

The results of this study indicate that centrifugation decreased sperm motility, viability and membrane integrity. This was probably due to the induction of *reactive oxygen species* (ROS) formation by the spermatozoa. These findings confirmed several studies reported by Sharma *et al.* [14] and Alvarez *et al.* [15] who stated that the effects of centrifugation have been attributed to the generation of ROS, which can irreversibly damage the spermatozoa. The toxicity effects of ROS eventually result in protein in protein and DNA damage, which destabilize the spermatozoa plasma membrane [16,17].

Moreover, the capacitation, membrane integrity and DNA fragmentation results after incubation for 15 min were significantly different in groups 1, 2 and 3. The percentage of sperm capacitation after incubation in group 3 (IGF-I complex) was higher compared with those of group 2 (BO + IGF-I complex) and group 1 (BO medium). This result strengthened the findings reported by Maxwell and Johnson [18] and La-Falci *et al.* [19] in which the seminal plasma function in goat is dependent on sperm capacitation. Maxwell and Johnson [18], Yanagimachi [20], and Miller *et al.* [21] reported that spermatozoa acquire many proteins during the epididymis transit and during ejaculation, possibly affecting their fecundity capacity.

Acrosome and membrane integrity are the main indicators of spermatozoa capability and membrane functionality [22]. In this study, the membrane integrity after incubation for 15 min with 12 ng of IGF-I complex (group 3) medium was higher compared to that of specimens incubated with BO + IGF-I complex (group 2) and BO medium (group 1). Schoneck *et al.* [23] revealed that one of the functions of seminal plasma in goats is protection against plasma membral lipid peroxidation.

The evaluation of sperm DNA fragmentation has become an important method for the evaluation of semen quality. In this study, DNA fragmentation after incubation in group 3

Table 2

Percentages of sperm capacitation, membrane integrity and DNA fragmentation after incubation for 15 min.

| Parameters             | BO medium (3 × $10^6$ sperm) | BO medium + IGF-I complex 12 ng $(3 \times 10^6 \text{ sperm})$ | IGF-I complex medium 12 ng<br>(3 × 10 <sup>6</sup> sperm) |
|------------------------|------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------|
| Capacitation (%)       | 57.25 ± 1.35 <sup>a</sup>    | $60.20 \pm 1.90^{b}$                                            | $76.10 \pm 1.55^{\circ}$                                  |
| Membrane integrity (%) | $50.15 \pm 4.50^{a}$         | $57.12 \pm 3.75^{b}$                                            | $65.75 \pm 2.15^{\circ}$                                  |
| DNA fragmentation (%)  | $49.80 \pm 2.80^{a}$         | $40.25 \pm 7.75^{b}$                                            | $40.90 \pm 4.15^{\circ}$                                  |

a,b,c Values in the same row with different superscripts indicate significant difference at P < 0.05 (n = 12).

(40.90 ± 4.15%) and group 2 (40.25 ± 7.75%) was lower compared with that in group 1 (49.80 ± 2.80%). Decreasing 3 rels of DNA fragmentation after incubation in groups 2 and 3 migl 3 be due to the effect of the IGF-I complex in each medium. The IGF-I complex in the seminal plasma contains many proteins in male bovine [24], swine [25] researchers have reported a negative correlation between high DNA fragmentation levels and assisted reproductive technology outcomes [28–31].

Based on the results of these experiments, it may be concluded that sperm motility, viability and membrane integrity were lower after centrifugation for 1800 rpm for 10 min. Furthermore, pure IGF-I complex medium increased capacitation and membrane integrity after incubation, whereas DNA fragmentation after incubation in the IGF-I complex medium was lower compared to that of specimens in the BO and BO + IGF-I complex media.

#### Conflict of interest statement

We declare that we have no conflict of interest.

#### Acknowledgments

This study was supported by funding from the Directorate General of Higher Education (Dikti), The National Education Ministry, Republic of Indonesia. The authors are also grateful to all of the laboratory staff in the Department of Reproduction, Faculty of Veterinary Medicine Airlangga University.

#### References

- Baldi E, Luconi M, Bonaccorsi L, Krausz C, Forti G. Human sperm activation during capacitation and acrosom reaction: role of calcium, protein phosphorylation and lipid remodelling pathways. Front Biosci 1996; 5: 110-123.
- [2] Argawal A, Saleh RA, Bedalwy A. Role of reactive oxygen species in the pathophysiology of human reproduction. *Fertil Steril* 2003; 79: 829-843.
- [3] Sanocka Dorota, Kurpisz Maciej. Reactive oxygen species (ROS) and sperm cells. Reprod Biol Endocrin 2004; 2(1): 12.
- [4] Sauerwein H, Breier BH, Gallaher BW, Götz CKG, Montag T. Growth hormone treatment of breeding bulls used for artificial insemination improves fertilization rates. *Domest Anim Endocrin* 2000; 18: 145-158.
- [5] Macpherson ML, Simmen RCM, Simmen FA, Hernandez J, Sheerin BR, Varner DD. Insulin-like growth factor-I and insulinlike growth factor binding protein 2 and 5 in equine seminal plasma: association with sperm characteristics and fertility. *Biol Reprod* 2002; 67: 648-654.
- [6] Kostecha Z, Blanovec J. Insulin like growth factor binding protein and their function (Mini review). Endocrin Regul 1999; 33: 90-94
- [7] Roser JF, Hess MF. The effects of age and fertility status on plasma and intratesticuler insulin like growth factor I concentration in stallion. *Theriogenology* 2001; 56: 723-733.
- [8] Baker J, Hardy MP, Zhou J, Bondy C, Lupu F, Bellvé AR. Effects of an IGF-I gene null mutation on mouse reproduction. *Mol Endocrinol* 1996; 10: 903-916.
- [9] Henricks DM, Kouba AJ, Lackey BR, Boone WR, Gray SL. Identification of insulin-like growth factor I in bovine seminal plasma and its receptor on spermatozoa: influence on sperm motility. *Biol Reprod* 1998; 59: 330-337.
- [10] Selvarajua S, Sivasubramania T, Raghavendraa BS, Rajua P, Raob SBN, Dineshkumarb D, et al. Effect of dietary energy on seminal plasma insulin-like growth factor-I (IGF-I), serum IGF-I

- and testosterone levels, semen quality and fertility in adult rams. *Theriogenology* 2012; **78**: 646-655.
- [11] Malik A, Laily M, Zakir MI. Effects of long term storage of semen in liquid nitrogen on the viability, motility and abnormality of frozen thawed Frisian Holstein bull spermatozoa. Asian Pac J Reprod 2015; 4(1): 22-25.
- [12] Malik A, Wahid H, Rosnina Y, Bukar M, Kasim A, Sabri M. Verification of X- and Y-spermatozoa separation by nested polymerase chain reaction (PCR), motility and membrane integrity in bovine. Afr J Biotechnol 2011; 10(85): 19796-19801.
- [13] Rougier Natalia, Uriondo Heydy, Papier Sergio, Checa Miguel Angel, Sueldo Carlos, Alvarez Cristian. Changes in DNA fragmentation during sperm preparation for intracytoplasmic sperm injection over time. Fertil Steril 2013; 100(1): 0015-0028.
- [14] Sharma RK, Vemulapalli S, Agrawal A. Effect of centrifuge speed, refrigeration medium, and sperm washing medium on cryopreserved sperm quality after thawing. J Androl 1997; 39: 33-38.
- [15] Alvarez JG, Lasso JL, Blasco L, Nunez RC, Heyner S, Caballro PP, et al. Centrifugation of human spermatozoa induces sublethal damage; separation of human spermatozoa from seminal plasma by dextran swim-up procedure without centrifugation extend their motile lifetime. *Hum Reprod* 1993; 8: 1087-1092.
- [16] Aitken RJ. Free radicals, lipid peroxidation and sperm function. Reprod Fert Dev 1995; 7: 659-668.
- [17] Aitken RJ, Gordon E, Harkiss D, Twigg JP, Milne P, Jennings Z, et al. Relative impact of oxidative stress on the functional competence and genomic integrity of human spermatozoa. *Biol Reprod* 1998; 59: 1037-1046.
- [18] Maxwel WMC, Johnson LA. Physiology of spermatozoa at high dilution rates: the influence of seminal plasma. *Theriogenology* 1999; 52: 1353-1362.
- [19] La Falci VSN, Tortorella H, Rodrígues JL, Brandelli A. Seasonal variation of goat seminal plasma proteins. *Theriogenology* 2002; 57: 1035-1048.
- [20] Yanagimachi R. Mammalian fertilization. In: Knobil E, Neill JD, editors. *The physiology of reproduction*. 2nd ed. New York. NY: Raven Press; 1994, p. 189-317.
- [21] Miller DJ, Winer MA, Ax R. Heparin binding proteins from seminal plasma bind to bovine spermatozoa and modulate capacitating by heparin. *Biol Reprod* 1990; 42: 899-915.
- [22] Garner DL, Johnson LA. Viability assessment of mammalian sperm using sybr-14 and propidium iodine. *Biol Reprod* 1995; 53: 544-549.
- [23] Schoneck C, Braun J, Einspanier R. Sperm viability is influenced in vitro by the bovine seminal protein a SFP: effects on motility, mitochondrial activity and lipid peroxidation. *Theriogenology* 1996; 45: 633-642.
- [24] Killian GJ, Chapman DA, Rogowski LA. Fertility-associated proteins in Holstein bull seminal plasma. *Biol Reprod* 1993; 49: 1202-1207.
- [25] Flowers WL. Boar fertility and artificial insemination. In: Abstracts of the 15th International Pig Veterinary Society Congress. Birmingham. England Birmingham: IPVS: 1998, p. 45-52.
- [26] Brandon CI, Heusner GL, Caudle AB, Fayrer-Hosken RA. Twodimensional polyacrylamide gel electrophoresis of equine seminal plasma proteins and their correlation with fertility. *Theriogenology* 1999; 52: 863-873.
- [27] Harshan HM, Sankar S, Singh LP, Singh MK, Sudharani S, Ansari MR, et al. Identification of PDC-109-like protein(s) in buffalo seminal plasma. Anim Reprod Sci 2009; 115: 306-311.
- [28] Steger K, Cavalcanti MC, HC S. Prognostic markers for competent human spermatozoa: fertilizing capacity and contribution to the embryo. Int J Androl 2011; 34: 513-527.
- [29] Lewis SE, Agbaje I, Alvarez J. Sperm DNA tests as useful adjuncts to semen analysis. Syst Biol Reprod Med 2008; 54: 111-125.
- [30] Speyer BE, Pizzey AR, Ranieri M, Joshi R, Delhanty JDA, Serhal P. Fall in implantation rates following ICSI with sperm with high DNA fragmentation. *Hum Reprod* 2010; 25: 1609-1618.
- [31] Simon L, Brunborg G, Stevenson M, Lutton D, McManus J, Lewis SE. Clinical significance of sperm DNA damage in assisted reproduction outcome. *Hum Reprod* 2010; 25: 1594-15608.

The effects of insulin-like growth factor I (IGF-I) complex from seminal plasma on capacitation, membrane integrity and DNA fragmentation in goat spermatozoa

#### **ORIGINALITY REPORT**

19% SIMILARITY INDEX

15%

14%

4%

INTERNET SOURCES

**PUBLICATIONS** 

STUDENT PAPERS

#### **PRIMARY SOURCES**

1

## ppjpi.unair.ac.id

Internet Source

3%

MALIK, Abdul, SYARIFDJAYA, Muhammad, GUNAWAN, Aam, ERLINA, Siti, JAELANI, Achmad and WIBOWO, Dadang Budi. "Süt Tozu-Yumurta Sarısı Sulandırıcısına Balık Yağı İlavesinin Dondurulmuş- ", Kafkas Üniversitesi, 2017.

2%

Publication

Selvaraju, S.. "Influence of IGF-I on buffalo (Bubalus bubalis) spermatozoa motility, membrane integrity, lipid peroxidation and fructose uptake in vitro", Animal Reproduction Science, 200907

2%

Publication

4

Ledesma, A, J Manes, A Cesari, R Alberio, and F Hozbor. "Electroejaculation Increases Low Molecular Weight Proteins in Seminal Plasma Modifying Sperm Quality in Corriedale Rams",

2%

# Reproduction in Domestic Animals, 2014. Publication

| 5  | repository.um.edu.my Internet Source                                                                                                                                                                                                             | 2% |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 6  | M.A. Puente, C.M. Tartaglione, M.N. Ritta. "Bull sperm acrosome reaction induced by gamma-aminobutyric acid (GABA) is mediated by GABAergic receptors type A", Animal Reproduction Science, 2011 Publication                                     | 1% |
| 7  | Proteomics of Spermatogenesis, 2005.  Publication                                                                                                                                                                                                | 1% |
| 8  | e-sciencecentral.org Internet Source                                                                                                                                                                                                             | 1% |
| 9  | Mendel Friedman. "Chemistry, Biochemistry, and Safety of Acrylamide. A Review", Journal of Agricultural and Food Chemistry, 2003 Publication                                                                                                     | 1% |
| 10 | jbiomedsci.biomedcentral.com Internet Source                                                                                                                                                                                                     | 1% |
| 11 | Tayita SUTTIROJPATTANA, Tamas SOMFAI, Satoko MATOBA, Takashi NAGAI, Rangsun PARNPAI, Masaya GESHI. "Pretreatment of bovine sperm with dithiobutylamine (DTBA) significantly improves embryo development after ICSI", Journal of Reproduction and | 1% |

| 12 | C. Alvarez Sedo, D. Lorenzi, M. Bilinski, H. Uriondo, F. Fulco, G. Alvarez, S. Papier. "Sperm DNA fragmentation has a negative correlation with progressive motility and strict morphology", Fertility and Sterility, 2016 Publication                                                                                                 | 1% |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 13 | Petyim, Somsin, Chanon Neungton, Isarin Thanaboonyawat, Pitak Laokirkkiat, and Roungsin Choavaratana. "Sperm preparation before freezing improves sperm motility and reduces apoptosis in post-freezing-thawing sperm compared with post-thawing sperm preparation", Journal of Assisted Reproduction and Genetics, 2014.  Publication | 1% |
| 14 | hub.hku.hk<br>Internet Source                                                                                                                                                                                                                                                                                                          | 1% |
| 15 | Submitted to Universitat Politècnica de València Student Paper                                                                                                                                                                                                                                                                         | 1% |
| 16 | revistas.bvs-vet.org.br Internet Source                                                                                                                                                                                                                                                                                                | 1% |

Exclude quotes On Exclude matches < 1%

Exclude bibliography On